Biblioteca UISEK

Catálogo en línea

Imagen de portada de Amazon
Imagen de Amazon.com

Introduction to machine learning with Python : a guide for data scientists / Andreas C. Müller and Sarah Guido.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Sebastopol, CA : O'Reilly Media, Inc., 2017Edición: Primera ediciónDescripción: xii, 376 páginas : ilustraciones ; 24 cmTipo de contenido:
  • texto
Tipo de medio:
  • no mediado
Tipo de soporte:
  • volumen
ISBN:
  • 9781449369415
Otro título:
  • Machine learning with Python
Tema(s): Clasificación CDD:
  • 005.133 M685in 2017
Contenidos parciales:
Introduction -- Supervised learning -- Unsupervised learning and preprocessing -- Representing data and engineering features -- Model evaluation and improvement -- Algorithm chains and pipelines -- Working with text data -- Wrapping up.
Recomendación de contenido: Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. --
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Libro Miguel de Cervantes Sala general 005.133 M685in 2017 (Navegar estantería(Abre debajo)) Ej.1 Disponible 00015698

Introduction -- Supervised learning -- Unsupervised learning and preprocessing -- Representing data and engineering features -- Model evaluation and improvement -- Algorithm chains and pipelines -- Working with text data -- Wrapping up.

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. --

M. Tecnología de la información

No hay comentarios en este titulo.

para colocar un comentario.

Con tecnología Koha