000 02043cam a22003017i 4500
005 20240116114422.0
008 100220t20162017caua 001 0 eng d
020 _a9781449369415
040 _aUISEK-EC
_bspa
_erda
082 0 4 _a005.133
_bM685in 2017
100 1 _aMüller, Andreas C.,
_95320
_eaut
245 1 0 _aIntroduction to machine learning with Python :
_ba guide for data scientists /
_cAndreas C. Müller and Sarah Guido.
246 3 0 _aMachine learning with Python
250 _aPrimera edición
264 1 _aSebastopol, CA :
_bO'Reilly Media, Inc.,
_c2017
300 _axii, 376 páginas :
_bilustraciones ;
_c24 cm
336 _atxt
337 _2rdamedia
_an
338 _2rdacarrier
_anc
505 2 _aIntroduction -- Supervised learning -- Unsupervised learning and preprocessing -- Representing data and engineering features -- Model evaluation and improvement -- Algorithm chains and pipelines -- Working with text data -- Wrapping up.
520 4 _aMachine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. --
526 _aM. Tecnología de la información
650 1 7 _aPython (Lenguaje de programación de computadores)
_2lemb
_95333
650 2 0 _aLenguajes de programación
_91195
650 2 7 _aMinería de datos
_2lemb
_94273
700 1 _aGuido, Sarah,
_95321
_eaut
942 _cBK
999 _c10554
_d10554