000 01918cam a2200277 i 4500
999 _c10553
_d10553
005 20200210162852.0
008 200210s2017 cauad gr 001 0 eng d
020 _a9781491962299
040 _aUISEK-EC
_bspa
_erda
100 1 _aGéron, Aurélien
_95316
_eaut
245 1 0 _aHands-on machine learning with Scikit-Learn and TensorFlow
_bconcepts, tools, and techniques to build intelligent systems
_cAurélien Géron
264 1 _aCalifornia :
_bO'Reilly,
_c2017
300 _axx, 549 páginas :
_bilustraciones, gráficos ;
_c24 cm
336 _atxt
337 _2rdamedia
_an
338 _2rdacarrier
_anc
505 2 _aThe fundamentals of machine learning. The machine learning landscape ; End-to-end machine learning project ; Classification ; Training models ; Support vector machines ; Decision trees ; Ensemble learning and random forests ; Dimensionality reduction -- Neural networks and deep learning. Up and running with TensorFlow ; Introduction to artificial neural networks ; Training deep neural nets ; Distributing TensorFlow across devices and servers ; Convolutional neural networks ; Recurrent neural networks ; Autoencoders ; Reinforcement learning -- Exercise solutions -- Machine learning project checklist -- SVM dual problem -- Autodiff -- Other popular ANN architectures.
520 _aThrough a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.
526 _aM. Tecnología de la información
546 _aTexto en inglés
082 0 4 _a006.3
_bG876h 2017
650 1 7 _aInteligencia artificial
_9354
_2lemb
650 2 7 _aAprendizaje automático
_95318
_2lemb
650 2 7 _aSistemas de control inteligente
_95319
_2lemb
942 _cBK